在制定教案时,教师可以参考同科目的优秀案例,以提升自身水平,一份成功的教案需包含明确的学习目标,以便学生清晰了解学习的方向,写文档范文小编今天就为您带来了平行四边形面积优秀教案5篇,相信一定会对你有所帮助。
平行四边形面积优秀教案篇1
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
?设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
?设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
?设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
?设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
?设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。
(二)拓展提升
一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?
1.引导学生算出它的面积;
2.请学生在方格纸上画出这样的平行四边形;
3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。
4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。
5.思考:面积相等的平行四边形一定等底等高吗?为什么?
?设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。
四、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
?设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
平行四边形面积优秀教案篇2
教学内容
义务教育课程标准实验教科书数学五年级上册第79~81页,平行四边形的面积。
教材分析
平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。
教学目标
1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。
3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。
教学重点
理解并掌握平行四边行的面积计算公式。
教学难点
理解平行四边形面积计算公式的推导过程。
教具、学具准备
课件,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、创设情境,引出课题
1、课件出示情境图。
师:同学们,很高兴能跟大家一起来学习,我发现我们学校环境特别优美,我拍了几幅照片,看一看,你能找出哪些图形?
生看图回答。
2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)
3、师:说一说,这两个花坛分别是什么形状的?。
生:一个长方形,一个正方形。(课件相机抽出平面图形)
师:你认为哪个花坛大呢?
生1:长方形的大。
生2:平行四边形的大。
师:怎样来比较两个花坛的大小呢?
生:算出它们的面积,再比较。
师:你会计算它们的面积吗?
生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。
4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。
板书课题:平行四边形的面积.
[设计意图:通过观察情境图,发现图形,巩固和加深了对已学过的图形特征的认识,加强学习内容与生活实际的联系,计算长方形的面积为学习新知作好了知识上的铺垫。]
二、探究新知,发现新知
1、猜一猜。
师:同学们大胆猜一猜,平行四边形的面积可能怎样计算?
平行四边形面积优秀教案篇3
教学目标:
1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)
教学重点:
掌握平行四边形的面积计算公式,能准确解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
两张格子纸,一张白纸,可变形的平行四边形
教学过程:
一、揭示课题:平行四边形(展示课件课本情景图)
师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?
生:平行四边形、长方形、圆形......
师:那么我们发现生活中处处有图形,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)
生:面积(学生回答面积后,马上追问,什么是面积?)
师:什么是面积?
生:面积就是一个图形所占平面的大小。
师:那么我们学过那些图形的面积?
生:长方形和正方形。
师:它们的面积怎么求?
生1:长方形的面积=长×宽
生2:正方形的面积=边长×边长
师板书:长方形的面积=长×宽
师:长方形的面积为什么等于长×宽?我们是怎样求出来的?
(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)
师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)
二、新授
师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)
生:能
师:怎么看出来?
生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。
生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。
师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!
生操作。(拿出1号方格纸,不满一格的都按照半格计算)
师:看看同学们都是怎么数的?
生:20个满格,8个半格,一共24个格,面积是24平方米。
师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?
(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)
猜测一下:平行四边形的面积可能与什么有关?
生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)
师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的底是多少?高是是多少?
生1:底是6米。
生2:高是4米。
生3:6×4=24,所以平行四边形的面积是底×高。
师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?
(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。
生操作
出示学生的作品,介绍一下是怎么想的。
生1:用拼的方法,拼成一个长方形,再数出面积。
生2:也是拼,剪掉上面的拼下面,剪下面拼上面。
师:刚才他们都用到了一个动词,是什么?(生:拼)
师板书:拼
生4:整块简拼,移到右边。
师:拼的过程其实也是我们数学当中的平移的过程。
师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。
3、出示3号白纸,学生自己画一个平行四边形
学生操作,小组讨论。
(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)
展示学生作品
师:这样的平行四边形要怎样计算面积呢?还能数方格吗?
小组讨论,学生操作剪一剪,拼一拼。
生1:不沿高剪得
生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。
师板书:长方形的面积=长×宽。
师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?
师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?
学生讨论
生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。
生2:这两个图形的面积是相等的。
师总结:验证成功,平行四边形的面积=底×高
(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)
师板书:平行四边形的面积=底×高
3、如果用字母s表示面积,a表示底,h表示高
你会用字母表示平行四边形的面积吗?
生:s=a×h
利用公式来计算
出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。
拓展练习:
(1)选择题:平行四边形的底是5米,高是4米,它的面积是( )
a20米b20平方米c18米d18平方米
(2)出示图形(强调高和底是相对的)
(3)画出一个底是3cm,高的5cm的平行四边形。
师总结:等底等高的平行四边形面积相等,但是形状不一样。
三、拓展探究
1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程
师:那么这个平行四边形在拉成长方形时面积发生改变了吗?
学生讨论
学生1:没有改变
学生2:改变
学生辩论
师:周长一样长的平行四边形和长方形,面积不一定也一样。
四、总结
这节课我们学习了什么,回顾整堂课的过程。
用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。
预知后事,自己分晓。
板书设计
新面积不变平行四边形的面积=底×高
拼数
已学(转化)长方形的面积=长×宽
s=a×h
平行四边形面积优秀教案篇4
教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:
多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格平行四边形底底边上的高面积
长方形长宽面积
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑p79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)、两个平行四边形的高相等,它们的面积就相等( )
(2)、平行四边形的高不变,底越长,它的面积就越大( ) 。
(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2 比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
平行四边形面积优秀教案篇5
一、教学目标:
1、理解和掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
二、教学重点:
理解公式并正确计算平行四边形的面积。
三、教学难点:
理解平行四边形的面积公式的推导过程。
四、学具准备:平行四边形纸
五、教学过程:
(一)、板书课题,揭示目标
同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)
平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)
一个方格代表12,不满一格的都按半格计算。
谁来数一数两个图形的面积各是多少?(出示)
平行四边形的底和高各是多少?(出示)
长方形的长和宽各是多少?(出示)
(出示)你发现了什么?
同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)
本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)
要想完成学习目标,还要靠同学们认真自学,请看自学指导。
(二)出示自学指导
1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。
2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?
(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)
现在开始自学,注意看书的姿势,用剪刀时要注意安全!
(三)、学生自学
1、学生看书自学,教师巡视,督促每个学生都能认真自学。
2、检测学生自学效果
师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)
观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?
想一想平行四边形的面积应该怎样计算?(师板书面积公式)
教师小结(展示动画):
同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。
(边口述,边板书。)教师讲述:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:s=a×h,简写成:s=ah。(板书)
下面就用你所学的知识去解决一下实际问题。
出示检测题
出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?
抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。
(四)、后教
1、学生自由更正
在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。
2、讨论归纳
问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?
板书:写公式——代入数——计算(单位)——写答话。
(五)、当堂训练
xxx
(六)、全课总结
这节课,你有什么收获?
六、板书设计
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
s=ah
写公式——代入数——计算(单位)——写答话
平行四边形面积优秀教案5篇相关文章: